Stem cell therapies for neuropathic pain

Authors

  • Jason Seewoodhary Department of Diabetes Mellitus and Endocrinology, Wrexham Maelor Hospital, Wrexham, UK
  • John N Harvey Department of Diabetes Mellitus and Endocrinology, Wrexham Maelor Hospital, Wrexham, UK

DOI:

https://doi.org/10.15277/bjdvd.2014.002

Abstract

Neuropathic pain is a large-scale epidemiological problem affecting 13-26% of the diabetic population. The complex aetiology and pathophysiology coupled with the lack of a diagnostic test for the underlying cause renders the assessment of neuropathic pain subjective and the treatment difficult, especially as current licensed treatments are limited in their application towards the attainment of palliation.

Cell therapies offer a novel curative therapeutic dimension for neuropathic pain. This is based on replacing damaged neuronal tissue, protecting against progressive nerve damage, and releasing soluble factors that act in a paracrine or endocrine manner, which facilitate repair and reversal of the pathology that underlies the genesis and propagation of damage within the somatosensory system. Cell therapies with potential utility for the treatment of neuropathic pain include embryonic stem cells, adult stem cells and induced pluripotent stem cells.

References

Ziegler D, Rathmann W, Dickhaus T et al. for the KORA Study Group. Prevalence of polyneuropathy in prediabetes and diabetes is associated with abdominal obesity and microangiopathy: the MONICA /KORA Augsbury Surveys S2 and S3. Diabetes Care 2008;31:464-9. http://dx.doi.org/10.2337/dc07-1796

Freynhagen R, Bennett MI. Diagnosis and management of neuropathic pain. BMJ 2009;339:391-5. http://dx.doi.org/10.1136/bmj.b3002

Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007;10:1361-8. http://dx.doi.org/10.1038/nn1992

Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 2004;16:E1. http://dx.doi.org/10.3171/foc.2004.16.5.2

Dworkin RH, O’Connor AB, Audette J et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc 2010;85:Suppl 3,S3-14. http://dx.doi.org/10.4065/mcp.2009.0649

Finnerup NB, Otto M, McQuay HJ et al. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 2005;118:289-305. http://dx.doi.org/10.1016/j.pain.2005.08.013

Mallis A, Furlan A. Sympathectomy for neuropathic pain. Cochrane Database Syst Rev 2003; 2: CD002918.

Pittler MH, Ernst E. Complementary therapies for neuropathic and neuralgic pain: systematic review. Clin J Pain 2008;24:731-3. http://dx.doi.org/10.1097/AJP.0b013e3181759231

Thompson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-7. http://dx.doi.org/10.1126/science.282.5391.1145

Gershon D. Complex political, ethical and legal issues surround research on human embryonic stem cells. Nature 2003;422:928-9. http://dx.doi.org/10.1038/nj6934-928a

Muttini A, Valbonetti L, Abate M, et al. Ovine amniotic epithelial cells: In vitro characterization and transplantation into equine superficial digital flexor tendon spontaneous defects. Res Vet Sci 2013;94:158-69. http://dx.doi.org/10.1016/j.rvsc.2012.07.028

Díaz-Pado S, Muiños-López E, Hermida-Gómez T, et al. Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation 2011;81:162-71. http://dx.doi.org/10.1016/j.diff.2011.01.005

Ralston A, Rossant J. The genetics of induced pluripotency. Reproduction 2012;139:35-44. http://dx.doi.org/10.1530/REP-09-0024

Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006;126:663-76. http://dx.doi.org/10.1016/j.cell.2006.07.024

Mallanna SK, Rizzino A. Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 2010;344:16-25. http://dx.doi.org/10.1016/j.ydbio.2010.05.014

Dohoon K, Chun-Hyung K, Jung-II M et al. Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell 2009;4:472-76. http://dx.doi.org/10.1016/j.stem.2009.05.005

Stadtfeld M, Nagaya M, Utikal J et al. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945-49. http://dx.doi.org/10.1126/science.1162494

Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult fibroblasts by defined factors. Cell 2007;131:861-72. http://dx.doi.org/10.1016/j.cell.2007.11.019

Klusakova I, Dubovy P. Experimental models of peripheral neuropathic pain based on traumatic nerve injuries – an anatomical perspective. Ann Anat 2009;191:248-59. http://dx.doi.org/10.1016/j.aanat.2009. 02.007

Odd-Gehir B. Predictive validity of behavioural animal models for chronic pain. Br J Pharmacol 2011;164:1195-206. http://dx.doi.org/10.1111/j.1476-5381.2011.01300.x

Le Bars D., Gozariu M, Cadden SW et al. Animal models of nociception. Pharmacol Rev 2001;53:597-652.

Kawasaki-Yatsugi S, Nagakura Y, Ogino S et al. Automated measurement of spontaneous pain-associated limb movement and drug efficacy evaluation in a rat model of neuropathic pain. Eur J Pain 2012;16:1426-36. http://dx.doi.org/10.1002/j.1532-2149.2012.00142.x

Braz JM, Sharif-Naeini R, Vogt D et al. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain. Neuron 2012;74:663-75. http://dx.doi.org/10.1016/j.neuron.2012.02.033

Vit JP, Ohara PT, Sundberg C et al. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia. Mol Pain 2009;5:42.

Hao S, Mata M, Wolfe D et al. Gene transfer of glutamic acid decarboxylase reduces neuropathic pain. Ann Neurol 2005;57:914-18. http://dx.doi.org/10.1002/ana.20483

Eaton MJ, Plunkett JA, Martinez MA et al. Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain. Cell Transplant 1999;8:87-101.

Mackie M, Hughes DI, Maxwell DJ et al. Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord. Neuroscience 2003;119:461-72. http://dx.doi.org/10.1016/S0306-4522(03)00174-X

De Koninck Y. Altered chloride homeostasis in neurological disorders: a new target. Curr Opin Pharmacol 2007;7:93-9. http://dx.doi.org/10.1016/j.coph.2006.11.005

Price TJ, Cervero F, de Konnick Y. Chloride regulation in the pain pathway. Brain Res 2009;60:149-70.

Hendricks WA, Pak ES, Owensby JP et al. Predifferentiated embryonic stem cells prevent chronic pain behaviours and restore sensory function following spinal cord injury in mice. Mol Med 2006;12:34-46. http://dx.doi.org/10.2119/2006-00014.Hendricks

Hains BC, Johnson KM, Hulseboch CE. Engraftment of serotonergic precursors enhances locomotor function and attenuates chronic central pain behaviour following spinal hemisection injury in the rat. Exp Neurol 2001;171:361-78. http://dx.doi.org/10.1006/exnr.2001.7751

Franchi S, Valsecchi A, Borsani E et al. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain 2012;153(4):850-61. http://dx.doi.org/10.1016/j.pain.2012.01.008

Martucci C, Trovato AE, Costa B et al. The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 2008;137:81-95. http://dx.doi.org/10.1016/j.pain.2007.08.017

Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 2012;235:78-90. http://dx.doi.org/10.1016/j.expneurol.2011. 02.010

Harris JA. Using c-fos as a neural marker of pain. Brain Res Bull 1998;45:1-8. http://dx.doi.org/10.1016/S0361-9230(97)00277-3

Cahill CM, Coderre TJ. Attenuation of hyperalgesia in a rat model of neuropathic pain after intrathecal pre- or post-treatment with a neurokinin-1 antagonist. Pain 2002;95:277-85. http://dx.doi.org/10.1016/S0304-3959(01)00410-9

Coronel MF, Musolino PL, Brumovsky PR et al. Bone marrow stromal cells attenuate injury-induced changes in galanin, NPY and NPY Y1-receptor expression after a sciatic nerve constriction. Neuropeptides 2009;43:125-32. http://dx.doi.org/10.1016/j.npep.2008.12.003

Liu HX, Hokfelt T. The participation in galanin in pain processing at the spinal level. Trends Pharamacol Sci 2002;23:468-74. http://dx.doi.org/10.1016/S0165-6147(02)02074-6

Pluchino S, Gritti A, Blezer E et al. Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 2009;66:343-54. http://dx.doi.org/10.1002/ana.21745

Siniscalco D, Giordano C, Galderisi U et al. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci 2012;67:655-69. http://dx.doi.org/10.1007/s00018-009-0202-4

Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L et al. Delayed post-ischaemic neuroprotection following neural stem cell transplantation involves multiple mechanisms. Brain 2009;132:2239-51. http://dx.doi.org/10.1093/brain/awp174

Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al. Synergistic effects of transplanted adult neural stem /progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of chronically injured spinal cord. J Neurosci 2010;30:1657-76. http://dx.doi.org/10.1523/JNEUROSCI.3111-09.2010

Hofstetter CP, Holmstrom N, Lilja JA et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 2005;8:346-53. http://dx.doi.org/10.1038/nn1405

Pendharkar AV, Chua JY, Andres RH et al. Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischaemia. Stroke 2010;41: 2064-70. http://dx.doi.org/10.1161/STROKEAHA.109.575993

Klein S, Svendsen CN. Stem cells in the injured spinal cord: reducing the pain and increasing the gain. Nature Neurosci 2005;8:259-60. http://dx.doi.org/10.1038/nn0305-259

Winkler RA, Fricker MA, Gates MA et al. Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol Cell Neurosci 1998;11: 99-116.

Sommer L, Ma Q, Anderson DJ. Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci 1996;8:221-41. http://dx.doi.org/10.1006/mcne.1996.0060

Brown A, Ricci MJ, Weaver LC. NGF message and protein distribution in the injured rat spinal cord. Exp Neurol 2004;188:115-27. http://dx.doi.org/10.1016/j.expneurol.2004.03.017

Klass M, Gavrikov V, Drury D et al. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg 2007;104:944-48. http://dx.doi.org/10.1213/01.ane. 0000258021.03211.d0

Siniscalco D, Giordano C, Galderisi U et al. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviours, cellular, and biomolecular modifications in neuropathic mice. Frontiers in Integrative Neuroscience 2011;5:1-10. http://dx.doi.org/10.3389/fnint.2011.00079

Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 2009;37: 1445-53. http://dx.doi.org/10.1016/j.exphem.2009.09.004

Ankrum I, Karp J. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 2010;16:203-09. http://dx.doi.org/10.1016/j.molmed.2010.02.005

Jain M, Armstrong RJ, Tyers P et al. GABAergic immunoreactivity is predominant in neurons derived from expanded human neural precursor cells in vitro. Exp Neurol 2003;182:113-23. http://dx.doi.org/10.1016/S0014-4886(03)00055-4

Mukhida K, Mendez I, McLeod M et al., Spinal GABAergic transplants attenuate mechanical allodynia in a rat model of neuropathic pain. Stem Cells 2007;25:2874-85. http://dx.doi.org/10.1634/stemcells.2007-0326

Amariglio N, Hirshberg A, Scheithauer BW et al. ‘Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.’ PLoS Medicine 2009;17:e:1000029.

Herrera MB, Fonsato V, Gatti S et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomised rats. J Cell Mol Med 2010;14:1605-18. http://dx.doi.org/10.1111/j.1582-4934.2009.00860.x

Downloads

Published

2014-04-01

Issue

Section

Reviews

Most read articles by the same author(s)