Advances in detection, prevention and treatment of heart failure in type 2 diabetes: part II
DOI:
https://doi.org/10.15277/bjd.2024.442Keywords:
type 2 diabetes, heart failure, heart failure with reduced ejection fraction, heart failure with preserved ejection fractionAbstract
This review is the second of two that aim to cover the advances in heart failure (HF) prevention, detection and treatment relevant to people with type 2 diabetes (T2DM). Part I focuses on HF classification and prevention, specifically lifestyle changes and primary preventative techniques including smoking cessation, physical activity, weight loss, lipid and glucose control. This concluded: 1) intensive blood glucose control is not in itself a necessary or sufficient treatment target for HF prevention, and a multifaceted preventative approach is likely to have a greater effect; 2) the most compelling evidence for HF risk reduction is for sodium glucose co- transporter 2 inhibitors although glucagon-like peptide 1 receptor agonists may also have a role; and 3) patients likely to derive most benefit are those at highest risk of developing overt HF, which probably represent the majority of people with T2DM. Part II of this review will cover early detection of cardiac dysfunction and treatment of established heart failure. Particular emphasis is placed on heart failure with preserved ejection fraction.
References
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation 2022; 145(18):e895-e1032. https://doi.org/10.1161/CIR.00000000001063
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2021;42(36):3599-726. https://doi.org/10.1093/eurheartj/ehab368
Wilcox JE, Fang JC, Margulies KB, Mann DL. Heart failure with recovered left ventricular ejection fraction: JACC scientific expert panel. J Am Coll Cardiol 2020;76(6):719-34. https://doi.org/10.j.jacc.2020.05.075
Boonman-de Winter LJ, Rutten FH, Cramer MJ, et al. High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia 2012;55(8):2154-62. https://doi.org/10.1007/s00125-012-2579-0
Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 2019;381(17):1609-20. https://.doi.org/10.1056/NEJMoa1908655
Arnold SV, Silverman DN, Gosch K, et al. Beta-blocker use and heart failure outcomes in mildly reduced and preserved ejection fraction.
JACC Heart Fail 2023;11(8 Pt 1):893-900. https://doi.org/10.1016/j.jchf.2023.03.017
Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 2014;370(15):1383-92. https://doi.org/10.1056/NEJMoa1313731
Pfeffer MA, Claggett B, Assmann SF, et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation 2015;131(1):34-42. https://doi.org/10.1161/CIRCULATIONAHA.114.013255
Agarwal R, Filippatos G, Pitt B, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. European Heart Journal 2022;43(6):474-84. https://doi.org/10.1093/eurheartj/ehab777
Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021;385(16):1451-61.https://doi.org/10.1056/NEJMoa2107038
Solomon SD, McMurray JJV, Claggett B, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med 2022;387(12):1089-98. https://doi.org/10.1056/NEJMoa2206286
Packer M, Butler J, Zannad F, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-Preserved trial. Circulation 2021; 144(16):1284-94. https://doi.org/10.1161/CIRCULATIONAHA.121.056824
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22):2117-28. https://doi.org/10.1056/NEJMoa1504720
Vaduganathan M, Claggett BL, Jhund P, et al. Time to clinical benefit of dapagliflozin in patients with heart failure with mildly reduced or preserved ejection fraction. JAMA Cardiol 2022;7(12):1259-63. https://doi.org/10.1001/jamacardio.2022.3750
Verma S, Mazer CD, Yan AT, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation 2019;140(21):1693-702. https://doi.org/10.1161/CIIRCULATIONAHA.119.042375
Brown AJM, Gandy S, McCrimmon R, Houston JG, Struthers AD, Lang A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur Heart J 2020;41(36):3421032. https://doi.org/10.1093/eurheartj/ehaa419
Mason T, Coelho-Filho OR, Verma S, et al. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging 2021;14(6):1164-73.https://doi.org/10.1016/j.jcmg.2020.10.017
Hundertmark MJ, Adler A, Antoniades C, et al. Assessment of cardiac energy metabolism, function, and physiology in patients with heart failure taking empagliflozin: the randomized, controlled EMPA-VISION trial. Circulation 2023;147:1654-69. https://doi.org/10.1161/CIRCULATIONAHA.122.062021
Jurgens M, Schou M, Hasbak P, et al. Effects of empagliflozin on myocardial flow reserve in patients With type 2 diabetes mellitus: the SIMPLE trial. J Am Heart Assoc 2021;10(15):e020418. https://doi.org/10.1161/JAHA.120.020418
Thirunavukarasu S, Jex N, Chowdhary A, et al. Empagliflozin treatment Is associated with improvements in cardiac energetics and function and reductions in myocardial cellular volume in patients with type 2 diabetes. Diabetes 2021;70(12):2810-22. https://doi.org/10.2337db21-0270
Sattar N, Petrie MC, Zinman B, Januzzi JL, Jr. Novel diabetes drugs and the cardiovascular specialist. J Am Coll Cardiol 2017;69(21):2646-56.https://doi.org/10.1016/j.jacc.2017.04.014
Kitzman DW, Brubaker P, Morgan T, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 2016;315(1):36-46. https://doi.org/10.1001/jama.2015.17346
Papamargaritis D, le Roux CW, Holst JJ, Davies MJ. New therapies for obesity. Cardiovasc Res 2024;119(18):2825-42. https://doi.org/10.1093/cvr/cvac176
Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long- term cardiovascular events. JAMA 2012;307(1):56-65. https://doi.org/10.1001/jama.2011.1914
Sjostrom L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 2014; 311(22):2297-304. https://doi.org/10.1001/jama.2014.5988
Doumouras AG, Wong JA, Paterson JM, et al. Bariatric surgery and cardiovascular outcomes in patients with obesity and cardiovascular disease: a population-based retrospective cohort study. Circulation 2021; 143(15):1468-80. https://doi.org/10.1161/CIRCULATIONAHA.120.052386
Borlaug BA, Jensen MD, Kitzman DW, Lam CSP, Obokata M, Rider OJ. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res 2023; 118(18):3434-50. https://doi.org/10.1093/cvr/cvac120
Reddy YNV, Lewis GD, Shah SJ, et al. Characterization of the obese phenotype of heart failure with preserved ejection fraction: a RELAX trial ancillary study. Mayo Clin Proc 2019;94(7):1199-209. https://doi.org/10.1016/j.mayocp.2018.11.037
Kosiborod MN, Abildstrom SZ, Borlaug BA, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med 2023;389(12):1069-84. https://doi.org/10.1056/NEJMoa2306963
Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 2021; 384(11):989. https://doi.org/10.1056/NEJMoa2032183
Stogios N, Fezza G, Wong JV, Ross HJ, Farkouh ME, Nolan RP. Current challenges for using the Kansas City Cardiomyopathy Questionnaire to obtain a standardized patient-reported health status outcome. Eur J Heart Fail 2021;23(2):205-07. https://doi.org/10.1002/ejhf.2139
Kosiborod MN, Abildstrøm SZ, Borlaug BA, et al. Design and baseline characteristics of STEP-HFpEF program evaluating semaglutide in patients with obesity HFpEF phenotype. JACC Heart Fail 2023; 11(8 Pt 1):1000-10. https://doi.org/10.1016/j.jchf.2023.05.010
Nikolaus Marx MF, Katharina Schütt, Dirk Müller-Wieland, et al and ESC scientific document group. 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023;44:4043-4140. https://doi.org/10.1093/eurheartj/ehad192
Miller RJH, Howlett JG, Fine NM. A novel approach to medical management of heart failure with reduced ejection fraction. Can J Cardiol 2021;37(4):632-43. https://doi.org/10.1016/j.cjca.2020.12.028
McMurray JJV, Packer M. How should we sequence the treatments for heart failure and a reduced ejection fraction?: a redefinition of evidence-based medicine. Circulation 2021;143(9):875-7. https://doi.org/10.1161/CIRCULATIONAHA.120.052926
Velazquez EJ, Morrow DA, Devore AD, et al. Angiotensin–neprilysin inhibition in acute decompensated heart failure. N Engl J Med 2019; 380(6):539-48. https://doi.org/10.1056/NEJMoa1812851
Fonarow GC, Yancy CW, Hernandez AF, Peterson ED, Spertus JA, Heidenreich PA. Potential impact of optimal implementation of evidence-based heart failure therapies on mortality. Am Heart J 2011; 161(6):1024-30.e3. https://doi.org/10.1016/j.ahj.2011.01.027
Mebazaa A, Davison B, Chioncel O, et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): a multinational, open-label, randomised, trial. Lancet 2022;400(10367):1938-52. https://doi.org/10.1016/S0140-6736(22)02076-1
Zaman S, Zaman SS, Scholtes T, et al. The mortality risk of deferring optimal medical therapy in heart failure: a systematic comparison against norms for surgical consent and patient information leaflets. Eur J Heart Fail 2017;19(11):1401-9. https://doi.org/10.1002/ejhf.838
Greene SJ, Butler J, Albert NM, et al. Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF registry. J Am Coll Cardiol 2018;72(4):351-66. https://doi.org/10.1016/j.jacc.2018.04.070
Savarese G, Kishi T, Vardeny O, et al. Heart failure drug treatment-- inertia, titration, and discontinuation: a multinational observational study (EVOLUTION HF). JACC Heart Fail 2023;11(1):1-14.https://doi.org/10.1016/j.jchf.2022.08.009
Verhestraeten C, Heggermont WA, Maris M. Clinical inertia in the treatment of heart failure: a major issue to tackle. Heart Failure Reviews 2021;26(6):1359-70. https://doi.org/10.1007/s10741-020-09979-z
Patel P, Gupta P, Burns A, et al. Biochemical urine testing of adherence to cardiovascular medications reveals high rates of nonadherence in people attending their annual review for type 2 diabetes. Diabetes Care 2019;42(6):1132-5. https://doi.org/10.2337/dc18-1453
Sze S, Squire I, Gupta P, et al. 128 Medication non-adherence assessed using liquid chromatography tandem mass spectrometry in patients with chronic heart failure. Heart 2023;109:A145-A6. https://doi.org/10.1136/heartjnl-2023-BCS.128
Gupta P, Voors AA, Patel P, et al. Non‐adherence to heart failure medications predicts clinical outcomes: assessment in a single spot urine sample by liquid chromatography‐tandem mass spectrometry (results of a prospective multicentre study). Eur J Heart Fail 2021; 23(7):1182-90. https://doi.org/10.1002/ejhf.2160
Powers M. Every person with diabetes needs ongoing self-management education and support. National Institue of Diabetes and Digestive and Kidney Diseases, 2019. [Available from: https://www.niddk.nih.gov/health-information/professionals/diabetes- discoveries-practice/diabetes-self-management-education-support]
Ruppar TM, Cooper PS, Mehr DR, Delgado JM, Dunbar‐Jacob JM. Medication adherence interventions improve heart failure mortality and readmission rates: systematic review and meta‐analysis of controlled trials. J Am Heart Assoc 2016;5(6):e002606. https://doi.org/10.1161/JAHA.115.002606
Unverzagt S, Meyer G, Mittmann S, Samos F-A, Unverzagt M, Prondzinsky R. Improving treatment adherence in heart failure. Deutsches Ärzteblatt Int 2016;113(25):423-30. https://doi.org/10.3238/arztebl.2016.0423
Greene SJ, Fonarow GC. Clinical inertia and medical therapy for heart failure: the unintended harms of ‘first, do no harm’. Eur Journal Heart Fail 2021;23(8):1343-5. https://doi.org/10.1002/ejhf.2283
Bauersachs J. Heart failure drug treatment: the fantastic four. Eur Heart J 2021;42(6):681-3. https://doi.org/10.1093/eurheartj/ehaa1012
Chen X, Wu M. Heart failure with recovered ejection fraction: current understanding and future prospects. Am J Med Sci 2023;365(1):1-8. https://doi.org/10.j.amjms.2022.07.018
Fonarow GC, Greene SJ. Rapid and intensive guideline-directed medical therapy for heart failure. J Am Coll Cardiol 2023;81(22):2145-8.https://doi.org/10.1016/j.jacc.2023.04.006
Published
Issue
Section
License
Copyright (c) 2024 British Journal of Diabetes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publish & Transfer of Copyright Agreement
For the mutual benefit and protection of the Author and the Journal Owner/Publisher it is necessary that the Author provides formal written Consent to Publish and Transfer of Copyright before publication of the Work.