Glucose lowering strategies with insulin
Abstract
Keywords
References
Campbell MS, Schatz DA, Chen V, and T1D Exchange Clinic Network. A contrast between children and adolescents with excellent and poor control: the T1D Exchange Clinic Registry experience. Pediatr Diabetes 2014;15(2):110–17. https://doi.org/10.1111/pedi.12067
Christie D, Thompson R, Sawtell, M, et al. Effectiveness of a structured educational intervention using psychological delivery methods in children and adolescents with poorly controlled type 1 diabetes: a cluster- randomized controlled trial of the CASCADE intervention. BMJ Open Diabetes Res Care 2016;4(1):e000165. https://doi.org/10.1136/bmjdrc-2015-000165
Pinhas-Hamiel O, Hamiel U, Boyko V, Graph-Barel C, Reichman B, Lerner-Geva L. Trajectories of HbA1c levels in children and youth with type 1 diabetes. PloS One 2014;9(10):e109109. https://doi.org/10.1371/journal.pone.0109109
McCall AL, Farhy LS. Treating type 1 diabetes: from strategies for insulin delivery to dual hormonal control. Minerva Endocrinol 2013;38(2):145–63.
Bailey CJ. Glucose-lowering therapies in type 2 diabetes: opportunities and challenges for peptides. Peptides 2018;100:9–17. https://doi.org/10.1016/j.peptides.2017.11.012
Jayakrishnapillai P, Nair SV, Kamalasanan K. Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes. Colloids and Surfaces B: Biointerfaces 2017;53:123–31. https://doi.org/10.1016/j.colsurfb.2017.02.017
Reno CM, Litvin M, Clark AL, Fisher SJ. Defective counterregulation and hypoglycemia unawareness in diabetes: mechanisms and emerging treatments. Endocrinol Metab Clin North Am 2013;42(1):15–38. https://doi.org/10.1016/j.ecl.2012.11.005
Weiss MA. Design of ultra-stable insulin analogues for the developing world. J Health Spec 2013;1(2):59–70. https://doi.org/10.4103/1658-600X.114683
Woo VC. New insulins and new aspects in insulin delivery. Can J Diabetes 2015;39(4):335–43. https://doi.org/10.1016/j.jcjd.2015.04.006
Weiss MA, Lawrence MC. A thing of beauty: structure and function of insulin's "aromatic triplet". Diabetes Obes Metab 2018;20(Suppl 2):51–63. https://doi.org/10.1111/dom.13402
Gast K, Schüler A, Wolff M, et al. Rapid-acting and human insulins: hexamer dissociation kinetics upon dilution of the pharmaceutical formulation. Pharmaceut Res 2017;34(11):2270–86. https://doi.org/10.1007/s11095-017-2233-0
Mitchell DE, Fayter AER, Deller RC, Hasan M, Gutierrez-Marcos J, Gibson MI. Ice-recrystallization inhibiting polymers protect proteins against freeze-stress and enable glycerol-free cryostorage. Materials Horizons 2019;6(2):364–8. https://doi.org/10.1039/C8MH00727F
Mathieu C, Bode BW, Franek E, et al. Efficacy and safety of fast-acting insulin aspart in comparison with insulin aspart in type 1 diabetes (onset 1): a 52-week, randomized, treat-to-target, phase III trial. Diabetes Obes Metab 2018;20(5):1148–55. https://doi.org/10.1111/dom.13205
Heise T, Zijlstra E, Nosek L, Rikte T, Haahr H. Pharmacological properties of faster-acting insulin aspart vs insulin aspart in patients with type 1 diabetes receiving continuous subcutaneous insulin infusion: a randomized, double-blind, crossover trial. Diabetes Obes Metab 2017;19(2): 208–15. https://doi.org/10.1111/dom.12803
Kildegaard J, Buckley ST, Nielsen RH, et al. Elucidating the mechanism of absorption of fast-acting insulin aspart: the role of niacinamide. Pharm Res 2019;36(3):49. https://doi.org/10.1007/s11095-019-2578-7
Walter HM, Timmler R, Mehnert H. Stabilized human insulin prevents catheter occlusion during continuous subcutaneous insulin infusion. Diabetes Res (Edinburgh, Scotland) 1990;13(2):75–7.
Lee HJ, McAuley A, Schilke KF, McGuire J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev 2011; 63(13):1160–71. https://doi.org/10.1016/j.addr.2011.06.015
Leelarathna L, Ashley D, Fidler C, Parekh W. The value of fast-acting insulin aspart compared with insulin aspart for patients with diabetes mellitus treated with bolus insulin from a UK health care system perspective. Ther Adv Endocrinol Metab 2018;9(7):187–97. https://doi.org/10.1177/2042018818766816
Tambascia MA, Eliaschewitz FG. Degludec: the new ultra-long insulin analogue. Diabetol Metab Syndr 2015;7:57. https://doi.org/10.1186/s13098-015-0037-0
Ma Z, Christiansen JS, Laursen T, Lauritzen T, Frystyk J. Short-term effects of NPH insulin, insulin detemir, and insulin glargine on the GH-IGF1-IGFBP axis in patients with type 1 diabetes. Eur J Endocrinol 2014; 171(4):471–9. https://doi.org/10.1530/EJE-14-0258
Madsbad S. LY2605541: a preferential hepato-specific insulin analogue. Diabetes 2014;63(2):390–2. https://doi.org/10.2337/db13-1646
Hirose T. Development of new basal insulin peglispro (LY2605541) ends in a disappointing result. Diabetol Int 2016;7(1):16–17. https://doi.org/10.1007/s13340-016-0255-1
Munoz-Garach A, Molina-Vega M, Tinahones FJ. How can a good idea fail? Basal insulin Peglispro [LY2605541] for the treatment of type 2 diabetes. Diabetes Ther 2017;8(1):9–22. https://doi.org/10.1007/s13300-016-0214-7
Battelino T, Omladič JŠ, Phillip M. Closed loop insulin delivery in diabetes. Best Pract Res Clin Endocrinol Metab 2015;29(3):315–25. https://doi.org/10.1016/j.beem.2015.03.001
Uduku C, Oliver N. Pharmacological aspects of closed loop insulin delivery for type 1 diabetes. Curr Opin Pharmacol 2017;36:29–33. https://doi.org/10.1016/j.coph.2017.07.006
Satin LS, Butler PC, Ha J, Sherman AS. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol Aspects Med 2015; 42:61–77. https://doi.org/10.1016/j.mam.2015.01.003
Priya G, Kalra S. A review of insulin resistance in type 1 diabetes: is there a place for adjunctive metformin? Diabetes Ther 2018;9(1):349–61. https://doi.org/10.1007/s13300-017-0333-9
Taylor MJ, Gregory R, Tomlins P, Jacob D, Hubble J, Sahota TS. Closed-loop glycaemic control using an implantable artificial pancreas in diabetic domestic pig (Sus scrofa domesticus). Int J Pharm 2016;500(1–2):371–8. https://doi.org/10.1016/j.ijpharm.2015.12.024
Dassau E, Renard E, Place J, et al. Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study. Diabetes Obes Metab 2017; 19(12):1698–705. https://doi.org/10.1111/dom.12999
Huyett LM, Dassau E, Zisser HC, Doyle FJ 3rd. Design and evaluation of a robust PID controller for a fully implantable artificial pancreas. Ind Eng Chem Res 2015;54(42):10311–21. https://doi.org/10.1021/acs.iecr.5b01237
Renard E. New modes of insulin delivery and new modes of monitoring of type 1 diabetes mellitus. Rev Prat 2018;68(6):620–7.
Zisser H. Clinical hurdles and possible solutions in the implementation of closed-loop control in type 1 diabetes mellitus. J Diabetes Sci Technol 2011;5(5):1283–6. https://doi.org/10.1177/193229681100500537
Rhea EM, Salameh TS, Banks WA. Routes for the delivery of insulin to the central nervous system: a comparative review. Exp Neurol 2019; 313:10–15. https://doi.org/10.1016/j.expneurol.2018.11.007
Frid AH, Kreugel G, Grassi G, et al. New insulin delivery recommendations. Mayo Clinic Proc 2016;91(9):1231–55. https://doi.org/10.1016/j.mayocp.2016.06.010
Easa N, Alany RG, Carew M, Vangala A. A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade. Drug Discovery Today 2019;24(2):440–51. https://doi.org/10.1016/j.drudis.2018.11.010
Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM. Polymeric hydrogels for oral insulin delivery. J Control Release 2013;165(2):129–38. https://doi.org/10.1016/j.jconrel.2012.11.005
Grigoras AG. Polymer-lipid hybrid systems used as carriers for insulin delivery. Nanomed Nanotechnol Biol Med 2017;13(8):2425–37. https://doi.org/10.1016/j.nano.2017.08.005
Fonte P, Araújo F, Silva C, et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv 2015;33(6, Part 3):1342–54. https://doi.org/10.1016/j.biotechadv.2015.02.010
Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 2009;1(2):a002584. https://doi.org/10.1101/cshperspect.a002584
Mukhopadhyay P, Mishra R, Rana D, Kundu PP. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review. Prog Polymer Sci 2012;37(11):1457–75. https://doi.org/10.1016/j.progpolymsci.2012.04.004
Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discovery Today 2016;21(1):157–66. https://doi.org/10.1016/j.drudis.2015.10.016
Tscheik C, Blasig IE, Winkler L. Trends in drug delivery through tissue barriers containing tight junctions. Tissue Barriers 2013;1(2):e24565. https://doi.org/10.4161/tisb.24565
Yeh T, Hsu L, Tseng MT, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 2011;32(26):6164–73. https://doi.org/10.1016/j.biomaterials.2011.03.056
Benediktsdóttir BE, Gudjónsson T, Baldursson Ó, Másson M. N-alkylation of highly quaternized chitosan derivatives affects the paracellular permeation enhancement in bronchial epithelia in vitro. Eur J Pharm Biopharm 2014;86(1):55–63. https://doi.org/10.1016/j.ejpb.2013.04.002
Maher S, Brayden DJ, Casettari L, Illum L. Application of permeation enhancers in oral delivery of macromolecules: an update. Pharmaceutics 2019;11(1):41. https://doi.org/10.3390/pharmaceutics11010041
Taverner A, Dondi R, Almansour K, et al. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation. J Control Release 2015;210:189–97. https://doi.org/10.1016/j.jconrel.2015.05.270
Lin Y, Mi F, Lin P, et al. Strategies for improving diabetic therapy via alternative administration routes that involve stimuli-responsive insulin-delivering systems. Adv Drug Deliv Rev 2019;139:71–82. https://doi.org/10.1016/j.addr.2018.12.001
Iyire A, Alaayedi M, Mohammed AR. Pre-formulation and systematic evaluation of amino acid assisted permeability of insulin across in vitro buccal cell layers. Sci Rep 2016;6:32498. https://doi.org/10.1038/srep32498
Lancina MG, Shankar RK, Yang H. Chitosan nanofibers for transbuccal insulin delivery. J Biomed Mater Res A 2017;105(5):1252–9. https://doi.org/10.1002/jbm.a.35984
Xu Y, Zhang X, Zhang Y, Ye J, Wang HL, Xia X, et al. Mechanisms of deformable nanovesicles based on insulin-phospholipid complex for enhancing buccal delivery of insulin. Int J Nanomedicine 2018;13:7319–31. https://doi.org/10.2147/IJN.S175425
Matteucci E, Giampietro O, Covolan V, Giustarini D, Fanti P, Rossi R. Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery. Drug Des Devel Ther 2015;9:3109–18. https://doi.org/10.2147/DDDT.S79322
Vernon G. Do insulin injections make you fat? Br J Gen Pract 2018; 68(669):188. https://doi.org/10.3399/bjgp18X695537
Yassin M, Sadowska Z, Tritsaris K, et al. Rectal insulin instillation inhibits inflammation and tumor development in chemically induced colitis. J Crohn's Colitis 2018;12(12):1459–74. https://doi.org/10.1093/ecco-jcc/jjy112
Nakadate Y, Sato T, Sato H, Koeva V, Schricker T. Hypoglycaemia after accidental ocular insulin injection. Br J Anaesth 2017;118(4):640–1. https://doi.org/10.1093/bja/aex065
Nightscout Foundation. We are not waiting. Nightscout support CGM in the cloud. 2019. Available: http://www.nightscout.info/.
DOI: https://doi.org/10.15277/bjd.2019.228
Refbacks
- There are currently no refbacks.